

20

IP68 BUSBAR SYSTEM

IP68 BUSBAR SYSTEM

E+I Engineering's Cast Resin Powerbar (CRB) is a 1000 Volt, IP68 rated maintenance free busbar system for use in outdoor, hazardous or life safety applications.

The conductor is available in aluminium or copper and is totally encapsulated in a fire retardant, self-extinguishing and homogenous polymer concrete. CRB has been proven to guarantee high resistance to fire, water, moisture, mechanical loads, chemicals and extreme temperatures (-40°C to 60°C).

Cast Resin Powerbar ranges from 800A to 6300A and is available in multiple configurations including neutral, double neutral and earth.

STANDARDS

Standards

The Cast Resin Bar range is fully ASTA Tested Certified. It is manufactured in a Certified Management System environment where Quality ISO 9001, Safety OHSAS 18001 and Environmental ISO 14001 standards are applied to all aspects of the manufacturing and installation processes. It is manufactured in accordance with IEC61439-1 and IEC61439-6.

Type Tests

Verification of:

- 10.2 Strength of Materials and Parts
- 10.3 Degree of Protection of Enclosures
- 10.4 Clearance and Creepage Distances
- 10.5 Protection Against **Electric Shock and** Integrity of Protective Circuits
- 10.9 Dielectric Properties
- 10.10 Temperature Rise Limits
- 10.11 Short-circuit Withstand Strength

ASTA Certificates

E+I Engineering completed extensive testing at ASTA accredited laboratories to ensure the product we supply meets the international requirements.

Ingress Protection

The product has been tested at IP68 in accordance with IEC 60529.

Impact Resistance Test

The product has been rated at IK10 in accordance with IEC 62262.

Seismic Compliance

The product has a Qualification Level – High in accordance to IEEE Standard 693-2005.

Fire Resistance

The product has been rated at F 180 in accordance with IEC 60331-1 and meets ISO 834 standards.

Damp Heat

The product is in accordance with IEC60068-2-78 (Damp Heat Steady State) and IEC 60068-2-3 (Damp Heat Cyclic).

Explosive Atmosphere (ATEX)

The product has the following ATEX markings in accordance with IEC60079-0:2009 and IEC60079-18:2009:

Ex m II C T5 Gb

Applicable standard and test that has been passed for Silicon Rubber Bellows

SN	Required Test Properties	Applicable Standard
1	Temperature Index	ASTM D 2863
2	Zero Halogen Test	IEC 60754-2
3	Flammability Test	UL 94 V0
4	Smoke Density	ASTM D 2843 or IEC 61034/1/2
5	Toxicity Test	NES 713

All certificates available on request

OHSAS 18001:2007 OHS 533652

No: EMS 566536

BUSBAR DIMENSIONS

Busbar Widths

3 Pole System

4 Pole System

5 Pole System

6 Pole System

Configuration	Phases	Neutral	Earth
TP	100%	0%	0%
TP/N	100%	100%	0%
TP/E	100%	0%	100% or 50%
TP/NE	100%	100%	100% or 50%
TP/DN	100%	200%	0%

Note: If no earth bar is specified, earthing is to be provided by installation contractor.

Busbar Heights

Copper Rating (A)	Construction Type	Busbar Height (H) (mm)	Aluminium Rating (A)	Construction Type	Busbar Height (H) (mm)
800	SS	100	1000	SS	110
1000	SS	130	1250	SS	130
1250	SS	105	1400	SS	150
1400	SS	120	1600	SS	180
1600	SS	145	2000	SS	230
2000	SS	175	2500	DS	300
2500	SS	210	3200	DS	380
3200	DS	310	4000	DS	540
4000	DS	360	5000	DS	620
5000	DS	460			
6300	DS	560	Key: SS	- Single Stack	DS - Double Stack

CHEMICAL RESISTANCE

Key:

- 1 Cast Resin is resistant to chemical
- 2 Chemical evaporated quickly from Cast Resin
- **3** Cast Resin is affected by chemical

Chemicals	Directly After Contact	After 24 hours	More Than 48 hours
Boric Acid	1	1	1
Hydrochloric Acid 10%	1	3	3
Sulfuric Acid 10%	1	1	1
Citric Acid	1	3	3
Lactic Acid 5%	1	3	3
Formic Acid 10%	3	3	3
Nitric Acid 10%	1	3	3
Acetic Acid 10%	3	3	3
Ethanol	1	1	1
Acetone	1	2	2
Calcium Chloride	1	1	1
Fuel (Diesel)	1	1	1
Ester	1	3	3
Ether	1	2	2
Formalin 37%	3	3	3
Glycerol	1	3	3
Ammonia 10%	1	1	1
Ammonia 30%	1	3	3
Sodium Hydroxide 10%	1	1	1
Sodium Hydroxide 50%	1	3	3
Lubricant	1	1	1
Engine Oil	1	1	1
Pentane	1	1	1
Toluene	1	3	3
Chlorinated Hydrocarbons	3	3	3
Javel Water	1	1	1

STRAIGHT LENGTHS

Feeder Length

Feeder lengths can be supplied at any length from 700mm - 4000mm.

Feeder Length

Distribution Length

Distribution Length

Tap off units are plugged into the busbar run along distribution lengths. There are two types of tap off units available:

Option A

Glass reinforced polyester enclosure for standard IP68

Option B

Stainless steel housing for IP68; flame retardant and resistant to extreme environmental conditions

5

Transition Kit

IP68 - IP55 transition kit is used to connect Cast Resin Powerbar directly to E+I Engineerings High Powerbar range.

Transition Kit

ELBOWS

Flatwise and Edgewise Elbows

Flatwise and edgewise elbows are used to make 90° changes in the direction of the busbar system.

SS Length 300mm - 1000mm

DS Length 300mm - 1000mm

Total maximum length 2000mm

Offset Sections

An offset is used to avoid obstacles such as pipes or steel columns and to conform to the structure of the building.

Length per leg

350mm - 500mm Max offset - 600mm

Edgewise Offset

Flatwise Offset

Combination Elbows

Combination elbows are used to conform to the building structure and to utilise a small amount of space to change direction.

Length per leg

350mm - 500mm

Edgewise Flatwise Offset

Flatwise Edgewise Offset

FLANGES

Flange Connections

Flange connections provide a direct connection to low voltage switchgear, transformer enclosures and other electrical equipment.

Panel Flange T2 L - 500mm - 1000mm

Panel Flange T3 L - 500mm - 1000mm

Panel Flange T4 L - 500mm - 1000mm

Panel Flange T7 L -500mm - 1000mm

7

Panel Flange T10 L - 500mm - 1000mm

Panel Flange T5 L - 500mm - 1000mm

Panel Flange T8 L - 300mm - 1000mm

Panel Flange T11 L - 500mm - 1000mm

L

L - 500mm - 1000mm

Panel Flange T9 L - 300mm - 1000mm

Panel Flange T12 L - 300mm - 1000mm

SPECIALS

Flatwise Tee

Flatwise tees are used to split one busbar run into two runs going in different directions. This reduces the amount of space needed when supplying two different parts of a building.

SS length per leg A 300mm - 1500mm B 300mm - 1000mm

DS length per leg A 500mm - 1500mm

B 500mm - 1500mm

Spring Hanger

Spring hangers are used to support vertical busbar runs on each floor. They compensate for building movement and thermal expansion.

Joint Pack

The Powerbar joint pack is a compression join design which utilises a specially designed Belleville washer to distribute the pressure evenly over the joint pack.

Special Sections

E+I Engineering manufacture a variety of more specialised units and components to meet unique system requirements. These include: end feed units, centre feed units, expansions units, edgewise tees, flatwise crosses, step up/ step down reducers, phase rotation units, inline disconnect cubicles, in-line tap off units and custom built busbar connection units.

IP68 BUSBAR SYSTEM

INSTALLATION

Edge Installation

Edge installation is the preferred method of installation for a smaller rated busbar system. It is also the main method used to install distribution busbar in building risers as tap off units can be connected easily.

Edge Installation

Flat Installation

Flat installation is the preferred method of installation for a higher rated, multistack busbar system. When installed on its flat all busbar rating has a height of 140mm.

Flat Installation

Vertical Installation

Vertical installation is the main method used to install distribution busbar in high-rise buildings. Tap off units can be connected easily and the busbar delivers to each floor.

Vertical Installation

TYPICAL INSTALLATION

E+I Engineering provide a complete power distribution solution.

The Powerbar range includes the following products:

MPB - Medium Powerbar

Air insulated range covering 160 - 1250 Amps

HPB - High Powerbar

Sandwich construction range covering 800 - 6600 Amps

CRB -Cast Resin Powerbar

IP68 rate polymer concrete product for use in extreme conditions covering 800 - 6300 Amps. CRB can be directly connected to HPB through a special jointing system.

All products are available with both copper and aluminium conductors.

TECHNICAL DATA (COPPER)

Technical Data - Copper								
Rated Current (A)	800	1000	1250	1400	1600			
Rated Operational Voltage (V)	1000	1000	1000	1000	1000			
Rated Insulation Voltage (V)	1000	1000	1000	1000	1000			
Short Circuit								
1 Second (kA rms)	36	40	50	50	65			
Peak Value (kA)	756	84	105	105	143			
Phase Conductor								
Cross Sectional Area (mm ²)	240	420	450	540	690			
Neutral Conductor								
Cross Sectional Area (mm ²)	240	420	450	540	690			
Isolated Earth Conductor								
100% Earth Cross Sectional Area (mm²)	240	420	450	540	690			
50% Earth Cross Sectional Area (mm ²)	120	210	225	270	345			
Overall Dimensions								
Height x Width of 4 Bar System (mm)	100 x 100	130 x 100	105 x 100	120 x 100	145 x 100			
Weight								
Weight of 4 Bar System (kg/m)	30.9	42.9	37.5	43.6	53.6			
Resistance								
Resistance (m Ω /m) at 20 ^o C	0.048	0.052	0.040	0.033	0.026			
Resistance (m Ω /m) at 80 ^o C	0.060	0.064	0.050	0.041	0.032			
Reactance								
Reactance (m Ω /m) at 50Hz	0.051	0.047	0.045	0.040	0.033			
Impedance								
Impedance (m Ω/m) at 80°C	0.079	0.080	0.067	0.057	0.046			
Voltage Drop at Full Load 50Hz								
Power Factor = 0.7 (V/m) at 80°C	0.155	0.136	0.145	0.138	0.127			
Power Factor = 0.8 (V/m) at 80°C	0.156	0.138	0.145	0.137	0.125			
Power Factor = 0.9 (V/m) at 80°C	0.153	0.136	0.139	0.131	0.119			
Power Factor = 1.0 (V/m) at 80°C	0.124	0.111	0.107	0.100	0.089			
Voltage Drop Full Load 60Hz								
Power Factor = 0.7 (V/m) at 80°C	0.168	0.148	0.158	0.152	0.140			
Power Factor = $0.8 (V/m)$ at $80^{\circ}C$	0.168	0.148	0.157	0.149	0.136			
Power Factor = $0.9 (V/m)$ at $80^{\circ}C$	0.162	0.143	0.148	0.140	0.128			
Power Factor = 1.0 (V/m) at 80° C	0.125	0.112	0.108	0.100	0.089			

Technical Data - Copper								
Rated Current (A)	2000	2500	3200	4000	5000	6300		
Rated Operational Voltage (V)	1000	1000	1000	1000	1000	1000		
Rated Insulation Voltage (V)	1000	1000	1000	1000	1000	1000		
Short Circuit		2	2	J.	J			
1 Second (kA rms)	65	65	100	100	100	120		
Peak Value (kA)	143	143	220	220	220	264		
Phase Conductor								
Cross Sectional Area (mm²)	870	1080	1500	1800	2400	3000		
Neutral Conductor								
Cross Sectional Area (mm ²)	870	1080	1500	1800	2400	3000		
Isolated Earth Conductor								
100% Earth Cross Sectional Area (mm²)	870	1080	1500	1800	2400	3000		
50% Earth Cross Sectional Area (mm ²)	435	540	750	900	1200	1500		
Overall Dimensions								
Height x Width of 4 Bar System (mm)	175 x 100	210 x 100	310 x 100	360 x 100	460 x 100	560 x 100		
Weight								
Weight of 4 Bar System (kg/m)	65.7	79.7	115.3	135.4	175.6	215.8		
Resistance								
Resistance (m Ω /m) at 20 ^o C	0.020	0.016	0.012	0.010	0.007	0.006		
Resistance (m Ω /m) at 80°C	0.025	0.020	0.015	0.012	0.009	0.007		
Reactance								
Reactance (m Ω /m) at 50Hz	0.027	0.021	0.016	0.014	0.011	0.009		
Impedance								
Impedance (m Ω /m) at 80 ^o C	0.037	0.029	0.022	0.018	0.014	0.011		
Voltage Drop at Full Load 50Hz								
Power Factor = 0.7 (V/m) at 80°C	0.128	0.126	0.120	0.127	0.122	0.125		
Power Factor = 0.8 (V/m) at 80° C	0.126	0.125	0.118	0.125	0.119	0.121		
Power Factor = 0.9 (V/m) at 80°C	0.120	0.119	0.112	0.117	0.110	0.113		
Power Factor = 1.0 (V/m) at 80°C	0.088	0.088	0.081	0.084	0.078	0.079		
Voltage Drop Full Load 60Hz								
Power Factor = 0.7 (V/m) at 80° C	0.142	0.140	0.133	0.141	0.136	0.139		
Power Factor = 0.8 (V/m) at 80° C	0.138	0.136	0.129	0.137	0.131	0.134		
Power Factor = 0.9 (V/m) at 80° C	0.128	0.127	0.120	0.126	0.120	0.122		
Power Factor = $1.0 (V/m)$ at $80^{\circ}C$	0.088	0.088	0.081	0.084	0.079	0.079		

TECHNICAL DATA (ALUMINIUM)

Technical Data - Aluminium								
Rated Current (A)	1000	1250	1400	1600	2000			
Rated Operational Voltage (V)	1000	1000	1000	1000	1000			
Rated Insulation Voltage (V)	1000	1000	1000	1000	1000			
Short Circuit								
1 Second (kA rms)	25	36	36	50	50			
Peak Value (kA)	52.5	75.6	75.6	105	105			
Phase Conductor								
Cross Sectional Area (mm²)	480	600	720	900	1200			
Neutral Conductor		,						
Cross Sectional Area (mm²)	480	600	720	900	1200			
Isolated Earth Conductor								
100% Earth Cross Sectional Area (mm ²)	480	600	720	900	1200			
50% Earth Cross Sectional Area (mm ²)	240	300	360	450	600			
Overall Dimensions								
Height x Width of 4 Bar System (mm)	110 × 100	130 x 100	150 x 100	180 x 100	230 x 100			
Weight								
Weight of 4 Bar System (kg/m)	27.6	32.6	37.7	45.2	57.8			
Resistance								
Resistance (m Ω /m) at 20 ^o C	0.066	0.053	0.025	0.020	0.015			
Resistance (m Ω /m) at 80°C	0.082	0.065	0.054	0.043	0.032			
Reactance								
Reactance (m Ω /m) at 50Hz	0.044	0.037	0.032	0.026	0.021			
Impedance								
Impedance (m Ω /m) at 80°C	0.093	0.075	0.063	0.051	0.030			
Voltage Drop at Full Load 50Hz								
Power Factor = $0.7 (V/m)$ at $80^{\circ}C$	0.153	0.156	0.148	0.136	0.130			
Power Factor = $0.8 (V/m)$ at $80^{\circ}C$	0.158	0.161	0.152	0.140	0.134			
Power Factor = 0.9 (V/m) at 80° C	0.162	0.162	0.152	0.140	0.133			
Power Factor = 1.0 (V/m) at 80°C	0.141	0.141	0.132	0.120	0.112			
Voltage Drop Full Load 60Hz								
Power Factor = $0.7 (V/m)$ at $80^{\circ}C$	0.164	0.167	0.159	0.147	0.141			
Power Factor = 0.8 (V/m) at 80°C	0.168	0.171	0.161	0.149	0.143			
Power Factor = 0.9 (V/m) at 80°C	0.167	0.169	0.159	0.147	0.140			
Power Factor = 1.0 (V/m) at 80° C	0.142	0.142	0.132	0.121	0.113			

Technical Data - Aluminium							
Rated Current (A)	2500	3200	4000	5000			
Rated Operational Voltage (V)	1000	1000	1000	1000			
Rated Insulation Voltage (V)	1000	1000	1000	1000			
Short Circuit							
1 Second (kA rms)	80	80	100	100			
Peak Value (kA)	176	176	220	220			
Phase Conductor							
Cross Sectional Area (mm ²)	1440	1920	2880	3360			
Neutral Conductor							
Cross Sectional Area (mm ²)	1440	1920	2880	3360			
Isolated Earth Conductor							
100% Earth Cross Sectional Area (mm²)	1440	1920	2880	3360			
50% Earth Cross Sectional Area (mm ²)	720	960	1440	1680			
Overall Dimensions							
Height x Width of 4 Bar System (mm)	300 x 100	380 x 100	540 x 100	620 x 100			
Weight							
Weight of 4 Bar System (kg/m)	75.3	95.5	135.8	156.0			
Resistance							
Resistance (mΩ/m) at 20⁰C	0.013	0.01	0.006	0.005			
Resistance (mΩ/m) at 80ºC	0.027	0.021	0.014	0.012			
Reactance							
Reactance (m Ω /m) at 50Hz	0.017	0.013	0.009	0.008			
Impedance		0.005	0.017	0.014			
Impedance (mΩ/m) at 80°C	0.032	0.025	0.017	0.014			
Voltage Drop at Full Load 50Hz	0.475	0.470	0.447	0.424			
Power Factor = $0.7 (V/m)$ at $80^{\circ}C$	0.135	0.132	0.113	0.121			
Power Factor = $0.8 (V/m)$ at 80° C	0.138	0.136	0.115	0.123			
Power Factor = $0.9 (V/m)$ at 80° C	0.117	0.135	0.113	0.122			
Voltage Drep Full Load 6015	0.117	0.115	0.095	0.101			
Power Factor = $0.7 (V/m)$ at 20°	0.145	01/7	0.122	0 171			
Power Factor = 0.7 (V/m) at 80° C	0.143	0.145	0.122	0.132			
Power Factor = $0.0 (V/m)$ at 80°	0.147	0.143	0.122	0.122			
Power Factor = $1.0 (V/m)$ at 20°	0.144	0.141	0.005	0.120			
Power Factor = $1.0 (V/m)$ at $80^{\circ}C$	0.118	0.114	0.095	0.101			

IP68 BUSBAR SYSTEM

BIM LIBRARY

E+I Engineering are committed to supporting our clients by providing direct access to our comprehensive BIM library.

Architects, contractors, engineering consultants and others are able to directly place specific items into a 3D BIM environment to produce accurate and efficient plans, containment drawings and bills of quantities to form a fully integrated overall project.

E+I Engineering provide high quality digitized data, available in a range of formats. Our intelligent BIM libraries are maintained and updated to reflect any changes in the products.

Log on to www.e-i-eng.com/bim-content to access the library

QUICK REFERENCE GUIDE

Critical Dimensions

- The distance from the centre of a joint to the wall, ceiling or floor must be at least 190mm.
- All joints must be accessible for maintenance. Joints should not be located inside a wall, ceiling or floor.
- There must be a minimum distance of 200mm between the busbar and any wall/ ceiling/ other busbar.
- Allow adequate space for tap off units to be installed easily and safely.
- Busbar lengths are available from 500mm
 4000mm.
- Distribution busbar lengths are available from 500mm - 4000mm.
- Edgewise elbow sections are available with leg lengths from 300mm - 1000mm. The total maximum length is 2000mm.
- Flatwise elbow sections are available with a maximum leg length of 1000mm. The minimum leg length is 300mm for a single stack busbar and 500mm for a double stack busbar. The total maximum length is 2000mm.

Operating Conditions

- Ambient temperature from -40°C to +60°C
- Relative humidity of 100% or below.
- This product designed for both indoor and outdoor use.

Critical Details

- Busbar drawings must include all relevant dimensions. Centre-line dimensions are expected. Please highlight any dimensions that are not centre-line.
- Walls and floors must be indicated and the relevant dimensions provided.
- The phasing and location of all switchboards must be provided.
- Full details are required for any transformer connections.
- Horizontal busbar must be installed with the neutral phase to the top. Please indicate the phase orientation for vertically installed busbar.

18 www.e-i-eng.com

E+I ENGINEERING GROUP

E+I Engineering Ltd.

European Manufacturing Location

Ballyderowen Burnfoot Co.Donegal Ireland

Tel: (UK) +44 (0)28 71353030 (ROI) +353 (0)74 9368719

E+I Engineering USA Corp

USA Manufacturing Location

400 Supreme Industrial Drive Anderson South Carolina 29621

Tel: +1 864 375 1757

Powerbar Gulf LLC

Middle East Manufacturing Location

N16/N17 Al Ghail Industrial Park Ras Al Khaimah PO Box 13229 UAE

Tel: +971(0) 7221 6100

E+I Engineering Ltd. UK Central Office

2/8 Victoria Avenue London EC2M 4NS

Tel: +44 (0)20 3206 1650

Email: info@e-i-eng.com

WWW.E-I-ENG.COM