

ALUMINIUM

E+I Engineering's High Powerbar (HPB) is a 1000 Volt totally encased, non-ventilated, low impedance sandwich construction. The range is available from 800A - 5000A with multiple bar configurations to suit project requirements.

The busbar is housed in an aluminium casing which acts as an earth. Ingress protection ratings are available from IP55 - IP67.

Features:

- Aluminium conductor's mill, with tin or silver coated finish
- Joint pack construction with double headed shear nuts for quick installation
- Up to 5 tap off points per 3m length
- All tap offs have mechanical/ electrical interlocks with an 'earth first, break last' safety feature
- Pressed out tags for tap off connections

Standards

The HPB range is fully ASTA Tested Certified and is CE approved. It is manufactured in a certified management system environment where Quality ISO 9001, Safety OHSAS 18001and Environmental ISO 14001 standards are applied to all aspects of the manufacturing and installation processes. It is manufactured in accordance with IEC61439-1 and IEC61439-6.

Verification of: Circuits 10.9 Dielectric Properties

All certificates available on request

OHS 533652

www.e-i-eng.com

STANDARDS

Type Tests

- 10.2 Strength of Materials and Parts 10.3 Degree of Protection of Enclosures 10.4 Clearance and Creepage Distances 10.5 Protection against Electric Shock and Integrity of Protective
- 10.10 Temperature Rise Limits
- 10.11 Short-circuit
 - Withstand Strength

ASTA Certificates

E+I Engineering completed extensive testing at ASTA and KEMA accredited laboratories to ensure the product we supply meets the international requirements.

Seismic Compliance

The product has a qualification level - high in accordance to IEEE standard 693-2005.

ISO 9001:2015 FM 12680

TECHNICAL FEATURES

- The low impedance sandwich design:
 - Improves heat dissipation
 - Improves short circuit rating
 - Reduces voltage drop/ impedance compared to cable
 - Removes potential pathways for flame, smoke and gas to pass through the busbar system
- E+I Engineering's patented process of pressing tabs into the conductor to allow the connection of tap off units ensures that no welding is necessary and protects the integrity of the conductor
- HPB is constructed with an all-aluminium housing which offers numerous advantages:
 - At 2.72g/cm³ aluminium is a very light metal making the product cheaper to transport and easier to install
 - It is a non-magnetic metal with much lower reactivity than steel. Aluminium is also naturally highly corrosive resistant making the product more durable and easier to maintain
 - Aluminium is an excellent heat and conductivity conductor so the housing can be used as an earth along the length of the busbar
- Powerbar offer a 50% or 100% fully isolated earth for systems where earth isolation is required.
 Continuity is maintained through the joint pack
- A fully rated 200% neutral option is available for busbar systems with non-linear loads. The additional neutral capacity prevents overloading caused by zero sequence harmonic currents
- Powerbar offer a fully certified fire wall penetration barrier for either a four hour or two hour rating

Straight Lengths

Straight lengths can be supplied at any length between 600mm - 3000mm.

Feeder Lengths

Feeder lengths account for the bulk of a busbar run.

Distribution Lengths

Distribution lengths allow tap off units to be plugged into the busbar run.

The tap off slot outlet and cover are made from a durable, high strength, Class B, 130°C insulation material.

The tap off slot cover prevents access to the contacts behind the cover and protects it from the entry of dirt, dust or moisture. Tap off units are IP55 as standard but higher levels up to IP67 can be achieved upon request.

The different types of build arrangement depending on rating of the required busbar

Busbar Rating		Busbar S	sbar Size (mm)	
(Amps)	Construction Type	Height	Width	
800A	Single	128mm	148mm	
900A	Single	118mm	148mm	
1000A	Single	138mm	148mm	
1250A	Single	168mm	148mm	
1400A	Single	183mm	148mm	
1600A	Single	203mm	148mm	
2000A	Single	258mm	148mm	
2500A	Double	361mm	148mm	
3200A	Double	431mm	148mm	
4000A	Double	541mm	148mm	
5000A	Triple	704mm	148mm	

Note: The maximum and minimum sizes we recommend are not the limits of what we can produce, but a guildeline to help you choose the correct product. Dimensions are taken from the centre of the joint.

Phase Configurations

Configuration	Phases	Neutral	Earth
TP	100%	0%	Case
TP/N	100%	100%	Case
TP/E	100%	0%	100% or 50%
TP/NE	100%	100%	100% or 50%
TP/DN	100%	200%	Case

3

STRAIGHT LENGTHS

Feeder Length

Distribution Length

4

www.e-i-eng.com

ALUMINIUM

ELBOWS

Flatwise Elbows

Edgewise Elbows

Custom Elbows

Flatwise and Edgewise Elbows

Flatwise and edgewise elbows are used to make 90° changes in the direction of the busbar system. E+I Engineering can also manufacture specially angled elbows for both flatwise and edgewise products.

Flatwise Elbow (Up or Down)

Ratings	Minimum Leg Size		Standard Leg Size		Maximum Leg Size	
(Amps)	Х	Y	x	Y	x	Y
800A	248mm	248mm	350mm	350mm	750mm	750mm
900A	243mm	243mm	350mm	350mm	750mm	750mm
1000A	253mm	253mm	350mm	350mm	750mm	750mm
1250A	268mm	268mm	350mm	350mm	750mm	750mm
1400A	275mm	275mm	350mm	350mm	750mm	750mm
1600A	285mm	285mm	350mm	350mm	750mm	750mm
2000A	313mm	313mm	350mm	350mm	750mm	750mm
2500A	364mm	364 mm	350mm	350mm	750mm	750mm
3200A	399mm	399mm	500mm	500mm	750mm	750mm
4000A	454mm	454mm	500mm	500mm	750mm	750mm
5000A	536mm	536mm	600mm	600mm	750mm	750mm

Edgewise Elbow (Left or Right)

Ratings	Minimum Leg Size		Standard Leg Size		Maximum Leg Size	
(Amps)	х	Y	х	Y	х	Y
800A, 900A,						
1000A, 1250A,						
1400A, 1600A,	25700.00	2570000	750,000,000	750,000,000	600,000	600,000
2000A, 2500A,	23/11/11	23/11/11	350mm	350mm	600mm	600mm
3200A, 4000A,						
5000A						

Offset Sections

An offset is used to avoid any obstacles eg. pipes or steel columns and to conform to the structure of the building.

Flatwise Offset (Up or Down)

Ratings	Minimum	Leg Size	Maximum	۱L
(Amps)	X	Y	X	
800A	248mm	50mm	650mm	
900A	243mm	50mm	650mm	
1000A	253mm	50mm	650mm	
1250A	268mm	50mm	650mm	
1400A	275mm	50mm	650mm	
1600A	285mm	50mm	650mm	
2000A	313mm	50mm	650mm	
2500A	364mm	50mm	650mm	
3200A	399mm	50mm	650mm	
4000A	454mm	50mm	650mm	
5000A	536mm	50mm	650mm	

Edgewise Offset (Left or Right)

(Amps) X Y X	Maximum	
800A, 900A, 1000A, 1250A, 1400A, 1600A, 2000A, 2500A, 3200A, 4000A, 5000A		

- v
- 496mm
- 486mm
- 506mm
- 536mm
- 550mm
- 570mm
- 626mm
- 728mm
- 798mm
- 908mm
- 1072mm

Flatwise Offset

Edgewise Offset

COMBINATIONS

Edge Right Flatwise Up

Flatwise Up Edgewise Right

Combination Elbows

Combination elbows are used to conform to the building's structure and to change the direction of the busbar within a confined space.

Detinge	Minimum Leg Size				
(Amps)	X (Edgewise side)	Y	Z (Flatwise side)		
800A	255mm	188mm	248mm		
900A	257mm	183mm	243mm		
1000A	257mm	193mm	253mm		
1250A	257mm	208mm	268mm		
1400A	257mm	215mm	275mm		
1600A	257mm	225mm	285mm		
2000A	257mm	253mm	313mm		
2500A	257mm	304mm	364mm		
3200A	257mm	339mm	399mm		
4000A	257mm	394mm	454mm		
5000A	257mm	476mm	536mm		

Detinge	Maximum Leg Size				
(Amps)	X (Edgewise side)	Y	Z (Flatwise side)		
800A	600mm	503mm	750mm		
900A	600mm	498mm	750mm		
1000A	600mm	508mm	750mm		
1250A	600mm	523mm	750mm		
1400A	600mm	530mm	750mm		
1600A	600mm	540mm	750mm		
2000A	600mm	568mm	750mm		
2500A	600mm	619mm	750mm		
3200A	600mm	654mm	750mm		
4000A	600mm	709mm	750mm		
5000A	600mm	791mm	750mm		

Flange Connections

Flange connections provide a direct connection to low voltage switchgear, transformer enclosures and other electrical equipment. Standard flanges can be offset to the left or right of the section as required.

Panel Flange

Ratings	Minimum Leg Size		
(Amps)	Х	Y	
800A, 900A,			
1000A, 1250A,		840mm	
1400A, 1600A,	220,000,000		
2000A, 2500A,	220mm		
3200A, 4000A,			
5000A			

Panel Flange

Parallel Flange

ALUMINIUM

FLANGES

Flatwise Elbow Flange

Edgewise Elbow Flange

Combination Flange

A flange combination elbow is used when the minimum leg lengths for either the standard elbow or the standard flange cannot be met.

Flange/Elbows (Flatwise)

Ratings	Minimum	Leg Size	Maximum	1 Leg Size
(Amps)	x	Y	x	Y
800A	248mm	115mm	750mm	488mm
900A	243mm	110mm	750mm	483mm
1000A	253mm	120mm	750mm	493mm
1250A	268mm	135mm	750mm	508mm
1400A	275mm	143mm	750mm	515mm
1600A	285mm	153mm	750mm	525mm
2000A	313mm	180mm	750mm	553mm
2500A	364mm	232mm	750mm	604mm
3200A	399mm	267mm	750mm	639mm
4000A	454mm	322mm	750mm	694mm
5000A	536mm	403mm	750mm	776mm

Flange/Elbows (Edgewise)

Ratings	Minimum Leg Size		Maximum Leg Size	
(Amps)	х	Y	x	Y
800A, 900A,				
1000A, 1250A,	257mm	124mm	600mm	495mm
1400A, 1600A,				
2000A, 2500A,				
3200A, 4000A,				
5000A				

Flatwise Tee

Flatwise tee's are used to split one busbar run into two runs going in different directions. This reduces the amount of space needed when supplying two different parts of a building with power.

Flatwise Tee

Ratings	Minimum Leg Size		
(Amps)	Х	Y	
800A	496mm	248mm	
900A	486mm	243mm	
1000A	506mm	253mm	
1250A	536mm	268mm	
1400A	550mm	275mm	
1600A	570mm	285mm	
2000A	626mm	313mm	
2500A	728mm	364mm	
3200A	798mm	399mm	
4000A	908mm	454mm	
5000A	1072mm	536mm	

Expansion Units

Expansion units are used to accommodate the expansion and contraction of a busbar system as well as allow for building movement. They allow for a 40mm movement along the length of the busbar.

Expansion units are recommended when a straight busbar run exceeds 60m. They are installed in the centre of long busbar runs, or at the beginning of riser runs to minimise the stress on the lower section of the busbar run.

9

Flatwise Tee

Standard Leg Size		Maximum Leg Size			
Х	Y	Х	Y		
700mm	350mm	1500mm	650mm		
700mm	350mm	1500mm	650mm		
700mm	350mm	1500mm	650mm		
700mm	350mm	1500mm	650mm		
700mm	350mm	1500mm	650mm		
700mm	350mm	1500mm	650mm		
700mm	350mm	1500mm	650mm		
700mm	350mm	1500mm	650mm		
1000mm	500mm	1500mm	650mm		
1000mm	500mm	1500mm	650mm		
1200mm	600mm	1500mm	650mm		

Expansion Unit

ALUMINIUM

FEED UNITS & END CAPS

End Feed Units

Cable Feed Units

End feed units are used on the ends of busbar risers which are cable fed. They can be on top or the bottom of the busbar. Centre feed units are used in the middle of busbar risers which are cable fed.

The size of end feed required depends on a number of factors:

- rating of busbar
- size of cable
- number of cables
- use of a protective device or isolator

End Caps

End caps are used to safely cap off the end of a busbar run. The end cap units are factory fitted but can be easily removed to allow for the extension of the system.

JOINT PACKS

Joint Packs

11

Flatwise Elbow Joint Packs

Joint Packs

The joint pack is a compression joint design which uses a specially designed Belleville washer to distribute the pressure evenly over the joint pack. Joint packs are used to connect all the components in a busbar system together. The earth is maintained through the joint by both the joint pack cover and the earth side plate. The joint pack is supplied in specific sizes depending on the rating of busbar required.

Flatwise Elbow Joint Packs

Flatwise elbow joint packs can be used to make 90° changes in the direction of the busbar system.

Edge installation is the preferred method of installation for a smaller rated busbar system. It is also the main method used to install distribution busbar in building risers as tap off units can be connected easily.

Special Sections

E+I Engineering manufacture a variety of more specialised units and components to meet unique system requirements. These include: edgewise tee's, flatwise cross, step up/ step down reducers, phase rotation units, in-line disconnect cubicles, in-line tap off units, custom built busbar connection units.

INSTALLATION

The modular design of HPB allows it to be installed flat or on its edge. The installation is determined by:

Busbar route
Type of installation
Available space
Size of busbar

Flat Installation

145mm.

Flat installation is the preferred method of installation for a higher rated, multistack busbar system. When installed on its flat all busbar rating has a height of

Spring Hanger

Spring hangers are used to support vertical busbar runs on each floor. They compensate for building movement and thermal expansion.

CRB -**Cast Resin Powerbar**

IP68 rate polymer concrete product for use in extreme conditions covering 800 - 6300 Amps. CRPB can be directly connected to HPB through a special jointing system.

All products are available with both copper and aluminium conductors.

TECHNICAL DATA

Technical Data										
Rated Current (A)	800	900	1000	1250	1400	1600				
Rated Operational Voltage (V)	1000	1000	1000	1000	1000	1000				
Rated Insulation Voltage (V)	1000	1000	1000	1000	1000	1000				
Short Circuit			1							
1 Second (kA rms)	25	32.5	50	65	65	65				
Peak Value (kA)	55	71.5	105	143	143	143				
Phase Conductor	Phase Conductor									
Cross Sectional Area (mm²)	328	360	480	660	750	870				
Neutral Conductor										
Cross Sectional Area (mm²)	328	360	480	660	750	870				
Isolated Earth Conductor										
100% Earth Cross Sectional Area (mm ²)	328	360	480	660	750	870				
50% Earth Cross Sectional Area (mm ²)	210	180	240	330	375	435				
Overall Dimensions										
Height x Width of 4 Bar System (mm)	130 x 145	118 x 148	140 x 145	170 x 145	185 x 145	205 x 145				
Weight										
Weight of 4 Bar System (kg/m)	8.7	9.2	10.4	12.8	14	15.6				
Resistance										
Resistance (m Ω /m) at 20 ^o C	0.0753	0.0191	0.0659	0.0504	0.0444	0.0382				
Resistance (m Ω /m) at 80 ^o C	0.0946	0.024	0.0829	0.0633	0.0557	0.0481				
Reactance										
Reactance (m Ω /m) at 50Hz	0.0157	0.0044	0.0141	0.0111	0.0099	0.0087				
Impedance	Impedance									
Impedance (m Ω /m) at 80 ^o C	0.077	0.036	0.0675	0.0515	0.0458	0.0392				
Voltage Drop at Full Load 50Hz										
Power Factor = $0.7 (V/m)$ at $80^{\circ}C$	0.107	0.111	0.118	0.113	0.112	0.111				
Power Factor = 0.8 (V/m) at 80°C	0.118	0.121	0.129	0.124	0.123	0.121				
Power Factor = 0.9 (V/m) at 80°C	0.128	0.130	0.140	0.134	0.132	0.130				
Power Factor = 1.0 (V/m) at 80°C	0.131	0.133	0.144	0.137	0.135	0.133				
Voltage Drop Full Load 60Hz										
Power Factor = $0.7 (V/m)$ at $80^{\circ}C$	0.111	0.112	0.122	0.117	0.115	0.114				
Power Factor = 0.8 (V/m) at 80°C	0.121	0.122	0.133	0.127	0.126	0.124				
Power Factor = 0.9 (V/m) at 80°C	0.130	0.132	0.142	0.136	0.134	0.133				
Power Factor = $1.0 (V/m)$ at $80^{\circ}C$	0.131	0.136	0.144	0.137	0.135	0.133				

Technical Data											
Rated Current (A)	2000	2500	3200	4000	5000						
Rated Operational Voltage (V)	1000	1000	1000	1000	1000						
Rated Insulation Voltage (V)	1000	1000	1000	1000	1000						
Short Circuit											
1 Second (kA rms)	80	80	100	120	120						
Peak Value (kA)	176	176	220	264	264						
Phase Conductor											
Cross Sectional Area (mm²)	1200	1320	1740	2400	2880						
Neutral Conductor											
Cross Sectional Area (mm²)	1200	1320	1740	2400	2880						
Isolated Earth Conductor											
100% Earth Cross Sectional Area (mm²)	1200	1320	1740	2400	2880						
50% Earth Cross Sectional Area (mm²)	600	660	870	1200	1440						
Overall Dimensions											
Height x Width of 4 Bar System (mm)	260 x 145	363 x 145	433 x 145	543 x 145	706 x 145						
Weight											
Weight of 4 Bar System (kg/m)	20.1	25.7	31.3	40.1	50.6						
Resistance											
Resistance (m Ω /m) at 20 ^o C	0.0277	0.0254	0.0191	0.0139	0.0111						
Resistance (m Ω /m) at 80 ^o C	0.0348	0.0319	0.024	0.0174	0.0138						
Reactance											
Reactance (m Ω /m) at 50Hz	0.0066	0.0055	0.0044	0.0033	0.0025						
Impedance											
Impedance (m Ω /m) at 80°C	0.0284	0.026	0.0196	0.0142	0.0113						
Voltage Drop at Full Load 50Hz											
Power Factor = 0.7 (V/m) at 80°C	0.101	0.098	0.111	0.101	0.085						
Power Factor = 0.8 (V/m) at 80°C	0.110	0.111	0.121	0.110	0.097						
Power Factor = 0.9 (V/m) at 80°C	0.119	0.125	0.130	0.119	0.108						
Power Factor = 1.0 (V/m) at 80°C	0.121	0.138	0.133	0.121	0.120						
Voltage Drop Full Load 60Hz											
Power Factor = 0.7 (V/m) at 80°C	0.104	0.099	0.114	0.104	0.086						
Power Factor = 0.8 (V/m) at 80°C	0.113	0.112	0.124	0.113	0.097						
Power Factor = 0.9 (V/m) at 80°C	0.121	0.125	0.133	0.121	0.109						
Power Factor = $1.0 (V/m)$ at $80^{\circ}C$	0.121	0.138	0.133	0.121	0.120						

16 www.e-i-eng.com

. —

ALUMINIUM

BIM LIBRARY

E+I Engineering are committed to supporting our clients by providing direct access to our comprehensive BIM library.

Architects, contractors, engineering consultants and others are able to directly place specific items into a 3D BIM environment to produce accurate and efficient plans, containment drawings and bills of quantities to form a fully integrated overall project.

E+I Engineering provide high quality digitized data, available in a range of formats. Our intelligent BIM libraries are maintained and updated to reflect any changes in the products.

Log on to www.e-i-eng.com/bim-content to access the library

Critical Dimensions

- The distance from the centre of a joint to the wall, ceiling or floor must be at least 190mm.
- All joints must be accessible for maintenance. Joints should not be located inside a wall, ceiling or floor.
- There must be a minimum distance of 50mm between the busbar and any wall/ ceiling/ other busbar.
- Allow adequate space for tap off units to be installed easily and safely.
- Busbar lengths are available from 600mm - 3000mm.
- Distribution busbar lengths are available from 600mm - 3000mm.
- Edgewise elbow sections are available with leg lengths from 255mm - 600mm.
- Flatwise elbow sections are available with a maximum leg length of 750mm. The minimum leg length varies depending on the busbar.

QUICK REFERENCE GUIDE

Operating Conditions

- Ambient temperature from -5°C to +55°C
- Relative humidity of 95% or below.
- This product designed for indoor use and can be installed horizontally or vertically.

Critical Details

- Busbar drawings must include all relevant dimensions. Centre-line dimensions are expected. Please highlight any dimensions that are not centre-line.
- Walls and floors must be indicated and the relevant dimensions provided.
- The phasing and location of all switchboards must be provided.
- Full details are required for any transformer connections.
- Horizontal busbar must be installed with the neutral phase to the top. Please indicate the phase orientation for vertically installed busbar.

E+I Engineering Ltd.

European Manufacturing Location

Ballyderowen Burnfoot Co.Donegal Ireland

Tel: (UK) +44 (0)28 71353030 (ROI) +353 (0)74 9368719

E+I Engineering USA Corp

USA Manufacturing Location

400 Supreme Industrial Drive Anderson South Carolina 29621

Tel: +1 864 375 1757

Powerbar Gulf LLC

Middle East Manufacturing Location

N16/N17 Al Ghail Industrial Park Ras Al Khaimah PO Box 13229 UAE

Tel: +971(0) 7221 6100

E+I Engineering Ltd. UK Central Office

2/8 Victoria Avenue London EC2M 4NS

Tel: +44 (0)20 3206 1650

Email: info@e-i-eng.com

WWW.E-I-ENG.COM

HPBAL/IEC/UAE/FEB2018